Hoppe, W., Gassmann, J. \& Zechmeister, K. (1970). In Crystallographic Computing, pp. 22-36. Edited by F. R. Ahmed. Copenhagen: Munksgaard.
Huttner, G. \& Lange, S. (1972). Acta Cryst. B28, 20492060.

IEEE Transactions (1967). AU-15, No. 2, Special issue on the FFT.
IEEE Transactions (1969). AU-17, No. 2, Special issue on the FFT.
lange, S., Stolle, U. \& Huttner, G. (1972). FFT3X-Ein Programm zur schnellen Fouriertransformation röntgenographischer Daten. TU München. Copies and descriptions are available upon request.
Markel, J. D. (1971). IEEE Trans. AU-19, No. 4, 305311.

Rollett, J. S. (1965). In Computing Methods in Crystallography, pp. 82-88. Edited by J. S. Rollett. Oxford: Pergamon Press.
Singleton, R. C. (1968a). Commun. Assoc. Comput. Mach. 11, No. 11, 773-776.
Singleton, R. C. (1968b). Commun. Assoc. Comput. Mach. 11, No. 11, 776-779.
Singleton, R. C. (1969). IEEE Trans. AU-17, No. 2, 93103.

Stout, G. H. \& Jensen, L. H. (1968), p. 246. X-ray Structure Determination. New York: Macmillan.
Telefunken (1971). TR440-Programmbeschreibung ALGOL. Konstanz. Beschr. Nr. N 31. F 2. 11, S. 4-5.
Waser, J. (1955). Acta Cryst. 8, 595.
Wells, M. (1965). Acta Cryst. 19, 173-179.

The Theory of the Spin-Density Patterson Function

By C. Wilkinson
Queen Elizabeth College, University of London, Campden Hill Road, London W8 7AH, England

(Received 18 December 1972; accepted 11 February 1973)
A general treatment is given of the derivation of a spin-density Patterson function from unpolarized neutron-diffraction data, showing that a peak in the function due to atoms m and n with spins $\mathbf{S}^{m}, \mathbf{S}^{n}$ has a height proportional to $\mathbf{S}^{m} . \mathbf{S}^{n}$ and is elongated in a direction which bisects these spin directions. The elongation is not appreciably affected even when the spin-density distributions of the atoms are highly aspherical.

Introduction

The essential features of the spin-density Patterson function have been described in a previous paper (Wilkinson, 1968). The purpose of the present paper is to provide a more precise treatment of certain parts of theory in which approximations were previously made. The same notation will again be used.

The Patterson function $Q^{\prime}(u)$ calculated from unpolarized neutron-diffraction intensities from a single crystal is given by

$$
Q^{\prime}(\mathbf{u})=Q(\mathbf{u})-R(\mathbf{u})
$$

where $Q(\mathbf{u})$ is the scalar-product autocorrelation function of the spin density:

$$
Q(\mathbf{u})=\sum_{1=3}^{i} \sum_{1=3}^{j} \mathscr{S}_{i}(\mathbf{r}) * \mathscr{S}_{j}(-\mathbf{r})
$$

$R(\mathbf{u})$ is the sum of the convolutions of the Fourier transform of the appropriate pairs of scattering-vector direction-cosine products with terms in the summation for $Q(\mathbf{u})$ and is

$$
R(\mathbf{u})=\sum_{1-3}^{i} \sum_{1-3}^{j}\left(\overline{k_{i} k_{j}}\right) *\left[\mathscr{S}_{i}(\mathbf{r}) * \mathscr{S}_{j}(-\mathbf{r})\right]
$$

In the previous theory for the evaluation of $R(\mathbf{u})$ it was assumed that the form factors for all magnetic atoms in the structure could be represented by the
function $\exp \left(-p^{2} k^{2}\right)$. The present treatment shows that this is an unnecessary approximation, but that the main features of the result (i.e. Patterson peak height proportional to the scalar product of component spins, elongation of peak in direction bisecting spin directions) remain unchanged. Expressions for $R(\mathbf{u})$ and $Q(\mathbf{u})$ are derived for two and three-dimensional data in Appendices 1 and 2.
$Q^{\prime}(\mathbf{u})$ for a zone of data measured out to $|\mathbf{k}|=\boldsymbol{k}_{0}$
In Appendix 1 it is shown that for two-dimensional data the Patterson peak due to atoms m and n which are separated by a distance $\mathbf{u}^{m n}$ is

$$
\begin{aligned}
Q^{\prime}\left(\mathbf{u}^{m n}+\mathbf{x}\right) & =\underset{k_{0} \rightarrow \infty}{\operatorname{Lt}}\left\{\pi k _ { 0 } ^ { 2 } \left(\Lambda_{1}\left(2 \pi r k_{0}\right)\right.\right. \\
& \times\left[S_{\perp}^{m} S_{\perp}^{n}+\frac{1}{2} S_{\|}^{m} S_{\|}^{n} \cos \left(\omega_{m}-\omega_{n}\right)\right. \\
& \left.-S_{\|}^{m} S_{\|}^{n} \cos \left(2 \alpha-\left(\omega_{m}+\omega_{n}\right)\right)\right] \\
& +\Omega\left(2 \pi r k_{0}\right) S_{\|}^{m} S_{\|}^{n} \cos \left(2 \alpha-\left(\omega_{m}+\omega_{n}\right)\right) \\
& \left.*\left(\hat{\mathscr{S}}^{m}(\mathbf{r}) * \hat{\mathscr{S}}^{n}(-\mathbf{r})\right)\right\}
\end{aligned}
$$

The component functions in this expression require some explanation.
(i) The quantity $\hat{\mathscr{S}}^{m}(\mathbf{r}) * \hat{\mathscr{S}}^{n}(-\mathbf{r})$ is similar to that which appears in the expression for Patterson peaks calculated from X-ray intensities. In the two-dimensional case it represents the convolution of the pro-
jected spin-density distributions associated with atoms m and n and will in future be abbreviated by $\sigma^{m n}(\mathbf{r})$. It is usually almost spherically symmetric and is relatively insensitive to aspherical parts in $\hat{\mathscr{S}}^{m}(\mathbf{r})$ and $\hat{\mathscr{S}}^{n}(\mathbf{r})$.
(ii) The function $\Lambda_{1}(2 \pi r k)$ is illustrated in Fig. 1. It may be shown that $\int_{\text {all space }} \pi k_{0}^{2} \Lambda_{1}\left(2 \pi r k_{0}\right) \mathrm{d} \tau_{r} \equiv 1$ for any k_{0}. Thus when k_{0} is very large (data from all reciprocal space are included) and $\Lambda_{1}\left(2 \pi r k_{0}\right)$ is consequently sharply peaked at the origin of real space, the convolution involving Λ_{1} gives

$$
\begin{aligned}
& \operatorname{Lt}_{k_{0} \rightarrow \infty}\left\{\pi k _ { 0 } ^ { 2 } \Lambda _ { 1 } (2 \pi r k _ { 0 }) \left[S_{\perp}^{m} S_{\perp}^{n}+\frac{1}{2} S_{\|}^{m} S_{\|}^{n} \cos \left(\omega_{m}-\omega_{n}\right)\right.\right. \\
& \left.\left.-S_{!}^{m} S_{\|}^{n} \cos \left(2 \alpha-\left(\omega_{m}+\omega_{n}\right)\right)\right] * \sigma^{m n}(\mathbf{r})\right\} \\
& =\left[S_{\perp}^{m} S_{\perp}^{n}+\frac{1}{2} S_{\|}^{m} S_{\|}^{n} \cos \left(\omega_{m}-\omega_{n}\right)\right] \sigma^{m n}(\mathbf{x}) .
\end{aligned}
$$

This contribution to $Q^{\prime}\left(\mathbf{u}^{m n}+\mathbf{x}\right)$ is therefore an approximately spherically symmetric function of \mathbf{x}.
(iii) Similar simplification of the term involving $\Omega(2 \pi r k)$ [$\Omega(2 \pi r k)$ is shown in Fig. 1] is not possible as the integral $\int_{\text {all space }} \pi k_{0}^{2} \Omega\left(2 \pi r k_{0}\right) \mathrm{d} \tau_{r}$ is not bounded. However, certain features of this term may be noted. It depends upon the product of the planar components of \mathbf{S}^{m} and \mathbf{S}^{n}. It is highly asymmetric with a $\cos 2 \alpha-$ type dependence, the positive lobes of the function making an angle $\alpha=\left(\omega_{m}+\omega_{n}\right) / 2$ with axis 1. The radial distribution of the function depends upon the precise nature of $\sigma(\mathbf{r})$ but has value zero at $\mathbf{x}=0$ and falls at large $|\mathbf{x}|$ as $\sigma(\mathbf{r})$ falls off with $|\mathbf{r}|$. The type of spatial variation to be expected from this term is shown in Fig. 2. The $\sigma^{m n}(\mathbf{r})$ used in this case was the autocorrelation function for a Gaussian distribution $\hat{\mathscr{S}}(\mathbf{r})$.
The overall expression for $Q^{\prime}\left(\mathbf{u}^{m n}+\mathbf{x}\right)$ is therefore

$$
\begin{aligned}
Q^{\prime}\left(\mathbf{u}^{m n}\right. & +\mathbf{x})=\left[S_{\perp}^{m} S_{\perp}^{n}+\frac{1}{2} S_{\|}^{m} S_{\|}^{n} \cos \left(\omega_{m}-\omega_{n}\right)\right] \sigma^{m n}(\mathbf{x}) \\
& +\underset{k 0 \rightarrow \infty}{ } \operatorname{Lt}\left\{S_{\|}^{m} S_{\|}^{n} \pi k_{0}^{2} \Omega\left(2 \pi r k_{0}\right)\right. \\
& \left.\times \cos \left[2 \alpha-\left(\omega_{m}+\omega_{n}\right)\right]\right\} * \sigma^{m n}(\mathbf{r})
\end{aligned}
$$

and its main features are
(a) A peak height $S_{\perp}^{m} S_{\perp}^{n}+\frac{1}{2} S_{\|}^{m} S_{\|}^{n} \cos \left(\omega_{m}-\omega_{n}\right) \sigma^{m n}(0)$.
(b) A peak elongation in the direction of the bisector of the angle between \mathbf{S}^{m} and \mathbf{S}^{n}.
[$\sigma^{m n}(0)$ varies with the electron distributions of the atoms m, n but is usually ~ 0.75 for $3 d$ electrons.]

$Q^{\prime}(\mathbf{u})$ for three-dimensional data

In Appendix 2 it is shown that for three-dimensional data

$$
\begin{aligned}
Q^{\prime}\left(\mathbf{u}^{m n}+\mathbf{x}\right) & =\operatorname{Lt}_{k 0 \rightarrow \infty}\left\{\frac { 4 \pi k _ { 0 } ^ { 3 } } { 3 } \left[\left(\Phi\left(2 \pi k_{0} r\right)-\Theta\left(2 \pi k_{0} r\right)\right) \mathbf{S}^{m} \cdot \mathbf{S}^{n}\right.\right. \\
& +\left\{3 \Theta\left(2 \pi k_{0} r\right)-\Phi\left(2 \pi k_{0} r\right)\right\} S^{n} S^{n}\left(\mathbf{S}^{m} \cdot \hat{\mathbf{x}}\right) \\
& \left.\left.\times\left(\mathbf{S}^{n} \cdot \hat{\mathbf{x}}\right)\right]\right\} * \sigma^{m n}(\mathbf{r}) .
\end{aligned}
$$

The functions $\Theta\left(2 \pi k_{0} r\right)$ and $\Phi\left(2 \pi k_{0} r\right)$ are shown in Fig. 3. $\sigma^{m n}(\mathbf{r})$ is again very nearly spherically symmetric, despite asphericities in $\hat{\mathscr{S}}^{m}(\mathbf{r})$ and $\hat{\mathscr{S}}^{n}(\mathbf{r})$. This is illustrated in Fig. 4 by the $\{100\}$ section of $\sigma(\mathbf{r})$ for the self convolution of an $\mathrm{Fe}^{2+} 3 d e_{g}$ electron-density

Fig. 1. The functions $\Lambda_{1}(z)$ and $\Omega(z)$ (dashed curve).

Fig. 2. Contribution to a 2D Patterson peak of the term Lt $\Omega\left(2 \pi k_{0} r\right)\left\{\cos \left[2 \alpha-\left(\omega_{m}+\omega_{n}\right)\right]\right\} *\left\{\hat{\mathscr{S}}^{m}(\mathbf{r}) * \hat{\mathscr{S}}^{m}(-\mathbf{r})\right\}$ $k_{0} \rightarrow \infty$
for a Gaussian distribution $\hat{\mathscr{S}}^{m}(\mathbf{r})$. Contours are drawn at intervals of $0 \cdot 05$. The zero contour is omitted.
distribution. Also shown is the same section of the e_{g} density function. It can be seen that the asphericity is considerably reduced by the convolution. The convolution was performed by transforming the square of the e_{g} form factor, to which an analytic approximation was made by use of the j_{0} and j_{4} functions fitted by Lisher \& Forsyth (1971) to the calculations of Watson \& Freeman (1961).

Fig. 3. The functions $\Phi(z)$ and $\Theta(z)$ (dashed curve).

The first term in the expression for $Q^{\prime}\left(\mathbf{u}^{m n}+\mathbf{x}\right)$ is therefore nearly spherically symmetric, while the second term is highly aspherical and produces a peak elongation along the bisector of spin direction \mathbf{S}^{m} and \mathbf{S}^{n}. It can be shown that at $\mathbf{x}=0$ the expression reduces to $Q^{\prime}\left(\mathbf{u}^{m n}\right)=\frac{2}{3} \mathbf{S}^{m} . \mathbf{S}^{n} \sigma^{m n}(0)\left[\sigma^{m n}(0) \sim 0.71\right.$ for $3 d$ electrons].

Discussion and conclusions

The present more rigorous derivation of expressions for the forms of peaks in a spin-density Patterson distribution function has shown the conclusions of the original paper to be correct. The heights of the Patterson peaks are $\frac{2}{3} \mathbf{S}^{m} . \mathbf{S}^{n} \sigma^{m n}(0)$ [3D] or ($\mathbf{S}^{m} . \mathbf{S}^{n}+\frac{1}{2} \mathbf{S}_{\|}^{m}$. $\left.\mathbf{S}_{\|}^{n}\right) \sigma^{m n}(0)$ [2D], with $\sigma^{m n}(0)$ usually $\sim 0 \cdot 7$. The elongation of peaks is in the direction of the bisector of the spin directions $\mathbf{S}^{m} . \mathbf{S}^{n}$ (or $\mathbf{S}_{\|}^{m} . \mathbf{S}_{\|}^{n}$), as $\sigma^{m n}(\mathbf{r})$ is normally an almost spherically symmetric function of \mathbf{r}. Convolution of highly aspherical electron-density distributions has shown that the resultant $\sigma^{m n}(\mathbf{r})$ is almost spherically symmetric and therefore the direction of the peak elongation will not be affected by such asphericities.

APPENDIX 1

$Q^{\prime}(\mathbf{u})$ for a zone of data
The Patterson function $Q^{\prime}(\mathbf{u})$ is given by

$$
Q^{\prime}(\mathbf{u})=Q(\mathbf{u})-R(\mathbf{u})
$$

where

$$
R(\mathbf{u})=\sum_{1-2}^{i} \sum_{1-2}^{j}\left(\overline{\hat{k}_{i} \hat{k}_{j}}\right) *\left[\mathscr{S}_{i}(\mathbf{r}) * \mathscr{S}_{j}(\mathbf{r})\right]
$$

and $\mathscr{S}_{i}(\mathbf{r}), \mathscr{S}_{j}(\mathbf{r})$ are the components on the i th and j th axis of the projected spin-density distribution.

Fig. 4. (a) $\{100\}$ section of the self convolution of an Fe^{2+} ion with a completely $e_{g} 3 d$ electron-density distribution. Contours are drawn at intervals of $0 \cdot 156 \mathrm{e}^{2} \AA^{-3}$. The zero contour is omitted. (b) $\{100\}$ section of the e_{g} density function. Contours are drawn at intervals of $0.156 \mathrm{e}^{-3}$. The zero contour is omitted.

Now

$$
\begin{aligned}
\overline{\hat{k}_{1} \hat{k}_{1}} & =\operatorname{Lt}_{k_{0} \rightarrow \infty} \int_{0}^{k_{0}} \int_{0}^{2 \pi} \cos ^{2}(\alpha+\theta) \exp (2 \pi i r k \cos \theta) k \mathrm{~d} k \mathrm{~d} \theta \\
& =\underset{k_{0} \rightarrow \infty}{\mathrm{Lt}} \frac{\pi k_{0}^{2}}{2}\left[\Lambda_{1}\left(2 \pi k_{0} r\right)(1+\cos 2 \alpha)\right. \\
& \left.+\Omega\left(2 \pi k_{0} r\right) \cos 2 \alpha\right]
\end{aligned}
$$

where

$$
\Lambda_{1}(z)=\frac{J_{1}(z)}{(z / 2)}, \quad \Omega(z)=\frac{1-J_{0}(z)}{(z / 2)^{2}}
$$

while α is the angle between \mathbf{r} and axis 1 and θ is the angle between \mathbf{r} and \mathbf{k}. Similarly

$$
\begin{aligned}
& \overline{\hat{k}_{2} \hat{k}_{2}}=\underset{k_{0} \rightarrow \infty}{\mathrm{Lt}} \frac{\pi k_{0}^{2}}{2}\left[\Lambda_{1}\left(2 \pi k_{0} r\right)(1-\cos 2 \alpha)\right. \\
& \\
& \left.\quad+\Omega\left(2 \pi k_{0} r\right) \cos 2 \alpha\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\overline{\hat{k}_{1} \hat{k}_{2}} & =\overline{\hat{k}_{2} \hat{k}_{1}}=\underset{k_{0} \rightarrow \infty}{\operatorname{Lt}} \frac{\pi k_{0}^{2}}{2}\left[\Lambda_{1}\left(2 \pi k_{0} r\right) \sin 2 \alpha\right. \\
& \left.-\Omega\left(2 \pi k_{0} r\right) \cos 2 \alpha\right]
\end{aligned}
$$

Combining these terms gives

$$
\begin{aligned}
R\left(\mathbf{u}^{m n}+\mathbf{x}\right) & =\underset{k 0 \rightarrow \infty}{\operatorname{Lt}} \frac{\pi k_{0}^{2}}{2} S_{\|}^{m} S_{\|}^{n}\left\{\Lambda_{1}\left(2 \pi k_{0} r\right)\right. \\
& \times\left[\cos \left(2 \alpha-\left(\omega_{m}+\omega_{n}\right)\right)+\cos \left(\omega_{m}-\omega_{n}\right)\right] \\
& \left.-\Omega\left(2 \pi k_{0} r\right)\left[\cos \left(2 \alpha-\left(\omega_{m}+\omega_{n}\right)\right)\right]\right\} \\
& *\left\{\hat{\mathscr{S}}^{m}(\mathbf{r}) * \hat{\mathscr{S}}^{n}(-\mathbf{r})\right\}
\end{aligned}
$$

where $\hat{\mathscr{S}}^{m}(\mathbf{r})$ is the 'unitary' spin-density distribution function defined by $\hat{\mathscr{S}}^{m}(\mathbf{r})=\mathscr{S}_{\|}^{m}(\mathbf{r}) / S_{\|}^{m}, S_{\|}^{m}$ is the component in the plane of the total projected spin density associated with atom m, ω_{m} is the angle between $S_{\|}^{m}$ and axis 1 and \mathbf{x} is the vector distance measured from the vector position $\mathbf{u}^{m n}$.

It can be similarly shown that

$$
\begin{aligned}
Q\left(\mathbf{u}^{m n}+\mathbf{x}\right) & =\underset{k_{0} \rightarrow \infty}{\mathrm{Lt}} \pi k_{0}^{2}\left\{\Lambda_{1}\left(2 \pi k_{0} r\right)\right. \\
& \left.\times\left[S_{\perp}^{m} S_{\perp}^{n}+S_{\|}^{m} S_{\|}^{n} \cos \left(\omega_{m}-\omega_{n}\right)\right]\right\} \\
& *\left\{\hat{\mathscr{S}}^{m}(\mathbf{r}) * \hat{\mathscr{S}}^{n}(-\mathbf{r})\right\}
\end{aligned}
$$

and thus

$$
\begin{aligned}
Q^{\prime}\left(\mathbf{u}^{m n}+\mathbf{x}\right) & =\underset{k 0 \rightarrow \infty}{\mathrm{Lt}} \pi k_{0}^{2}\left\{\Lambda_{1}\left(2 \pi k_{0} r\right)\right. \\
& \times\left[S_{\perp}^{m} S_{\perp}^{n}+\frac{1}{2} S_{\|}^{m} S_{\|}^{n} \cos \left(\omega_{m}-\omega_{n}\right)\right. \\
& \left.-S_{\|}^{m} S_{\|}^{n} \cos \left(2 \alpha-\left(\omega_{m}+\omega_{n}\right)\right)\right] \\
& \left.+\Omega\left(2 \pi k_{0} r\right) S_{\|}^{m} S_{\|}^{n}\left[\cos \left(2 \alpha-\left(\omega_{m}+\omega_{n}\right)\right)\right]\right\} \\
& *\left\{\hat{\mathscr{S}}^{m}(\mathbf{r}) * \hat{\mathscr{S}}^{n}(-\mathbf{r})\right\} .
\end{aligned}
$$

APPENDIX 2

Three-dimensional data

In this case

$$
R(\mathbf{u})=\sum_{1-3}^{i} \sum_{1-3}^{j} \overline{\hat{k}}_{i} \hat{k}_{j} *\left\{\mathscr{S}_{i}(\mathbf{r}) * \mathscr{S}_{j}(\mathbf{r})\right\}
$$

The quantities involved in the summation are of the type
(a)

$$
\begin{aligned}
\hat{k}_{i} \hat{k}_{i} & =\int_{0}^{2 \pi} \int_{\varphi}^{\pi} \int_{0}^{\pi} \hat{k}_{i} \hat{k}_{i} \exp (2 \pi i r k \cos \theta) k^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} k \mathrm{~d} \varphi \\
& =\underset{k 0 \rightarrow \infty}{\operatorname{Lt}} \frac{4 \pi k_{0}^{3}}{3}\left\{\cos ^{2} \alpha_{i}\left[\Theta\left(2 \pi k_{0} r\right)-2 \Phi\left(2 \pi k_{0} r\right)\right]\right. \\
& \left.+\sin ^{2} \alpha_{i} \Phi\left(2 \pi k_{0} r\right)\right\}
\end{aligned}
$$

where

$$
\left\{\begin{array}{l}
\Phi(z)=\frac{3(\sin z-z \cos z)}{z^{3}} \\
\Theta(z)=\frac{3[\mathscr{S} i(z)-\sin z]}{z^{3}}
\end{array}\right.
$$

and

$$
\begin{equation*}
\mathscr{S} i(z)=\int_{0}^{z} \frac{\sin y}{y} \mathrm{~d} y \tag{b}
\end{equation*}
$$

$\overline{\hat{k}_{i} \hat{k}_{j}}=\underset{k 0 \rightarrow \infty}{\operatorname{Lt}} \frac{4 \pi k_{0}^{3}}{3} \cos \alpha_{i} \cos \alpha_{j}\left\{3 \Theta\left(2 \pi k_{0} r\right)-\Phi\left(2 \pi k_{0} r\right)\right\}$
and summing over all nine terms gives

$$
\begin{aligned}
R(\mathbf{u}) & =\underset{k_{0} \rightarrow \infty}{\operatorname{Lt}}-\frac{4}{3} \pi k_{0}^{3}\left\{\left(S_{1}^{m} \cos \alpha_{1}+S_{2}^{m} \cos \alpha_{2}+S_{3}^{m} \cos \alpha_{3}\right)\right. \\
& \times\left(S_{1}^{n} \cos \alpha_{1}+S_{2}^{n} \cos \alpha_{2}+S_{3}^{n} \cos \alpha_{3}\right) \\
& \times\left[3 \Theta\left(2 \pi k_{0} r\right)-\Phi\left(2 \pi k_{0} r\right)\right] \\
& \left.-\mathbf{S}^{m} \cdot \mathbf{S}^{n} \Theta\left(2 \pi k_{0} r\right)\right\} *\left\{\hat{\mathscr{S}}^{m}(\mathbf{r}) * \hat{\mathscr{S}}^{n}(-\mathbf{r})\right\}
\end{aligned}
$$

It may similarly be shown that
$Q(\mathbf{u})=\operatorname{Lt}_{k 0 \rightarrow \infty} \frac{4}{3} \pi k_{0}^{3} \Phi\left(2 \pi k_{0} r\right) \mathbf{S}^{m} \cdot \mathbf{S}^{n} *\left\{\hat{\mathscr{S}}^{m}(\mathbf{r}) * \hat{\mathscr{S}}^{n}(-\mathbf{r})\right\}$
and therefore

$$
\begin{aligned}
Q^{\prime}\left(\mathbf{u}^{m n}+\mathbf{x}\right) & =\operatorname{Lt}_{k 0 \rightarrow \infty} \frac{4}{3} \pi k_{0}^{3}\left\{\left[\Phi\left(2 \pi k_{0} r\right)-\Theta\left(2 \pi k_{0} r\right)\right] \mathbf{S}^{m} \cdot \mathbf{S}^{n}\right. \\
& +S^{m} S^{n}\left[3 \Theta\left(2 \pi k_{0} r\right)-\Phi\left(2 \pi k_{0} r\right)\right]\left(\mathbf{S}^{m} \cdot \hat{\mathbf{x}}\right) \\
& \left.\times\left(\hat{\mathbf{S}}^{n} \cdot \hat{\mathbf{x}}\right)\right\} *\left\{\hat{\mathscr{S}}^{m}(\mathbf{r}) * \hat{\mathscr{S}}^{n}(-\mathbf{r})\right\}
\end{aligned}
$$

References

Lisher, E. J. \& Forsyth, J. B. (1971). Acta Cryst. A 27, 545-549.
Watson, R. E. \& Freeman, A. J. (1961). Acta Cryst. 14, 27-37.
Wilkinson, C. (1968). Phil. Mag. 17, 609-621.

