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The Theory of the Spin-Density Patterson Function
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A general treatment is given of the derivation of a spin-density Patterson function from unpolarized
neutron-diffraction data, showing that a peak in the function due to atoms m and »n with spins S™, S” has
a height proportional to S™ . 8" and is elongated in a direction which bisects these spin directions. The
elongation is not appreciably affected even when the spin-density distributions of the atoms are highly

aspherical.

Introduction

The essential features of the spin-density Patterson
function have been described in a previous paper (Wil-
kinson, 1968). The purpose of the present paper is to
provide a more precise treatment of certain parts of
theory in which approximations were previously made.
The same notation will again be used.

The Patterson function Q’(u) calculated from un-
polarized neutron-diffraction intensities from a single
crystal is given by

Q'(u)=Q(u)— R(u)

where Q(u) is the scalar-product autocorrelation func-
tion of the spin density:

i
oM=> > Fi)* A1),
1-3 1-3
R(u) is the sum of the convolutions of the Fourier
transform of the appropriate pairs of scattering-vector
direction-cosine products with terms in the summation
for Q(u) and is

ij
R(“)=z Z (kiky) * [Zi(0) » L (—1)] .
1=3 1=3
In the previous theory for the evaluation of R(u) it

was assumed that the form factors for all magnetic
atoms in the structure could be represented by the

function exp (—p?*k?). The present treatment shows
that this is an unnecessary approximation, but that the
main features of the result (i.e. Patterson peak height
proportional to the scalar product of component spins,
elongation of peak in direction bisecting spin direc-
tions) remain unchanged. Expressions for R(u) and
QO(u) are derived for two and three-dimensional data in
Appendices 1 and 2.

Q’(u) for a zone of data measured out to k| =%,

In Appendix 1 it is shown that for two-dimensional
data the Patterson peak due to atoms m and » which
are separated by a distance u™ is
Q'™ +x)= Lt {nkd(A,(2nrk,)

k,

O—DOO
X [STS1+3STS] cos (Wm— )
—8™8% cos (20— (W + wn))]
+Q(27rko)STS’ cos (20— (Wm+ W)
* (F(x) * PH(—1)} .
The component functions in this expression require
some explanation.
(i) The quantity &#™(x) * &"(—r) is similar to that
which appears in the expression for Patterson peaks

calculated from X-ray intensities. In the two-dimen-
sional case it represents the convolution of the pro-
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jected spin-density distributions associated with atoms
m and »n and will in future be abbreviated by o™*(r).
It is usually almost spherically symmetric and is rela-
tively insensitive to aspherical parts in "(r) and
&n(r).

(i1) The function A,(2nrk) is illustrated in Fig. 1. It

nk3 A,Q2nrky) dr,=1 for
all space
any k,. Thus when k, is very large (data from all

reciprocal space are included) and A,(2nrk,) is con-
sequently sharply peaked at the origin of real space,
the convolution involving A4, gives

Lt {nk3A,(2nrky) [S™S" +1S™ST coSs (W, — Wy)

ko=
— SIS cos 20— (wp + w,))] * 0™ (r)}
=[STSI+1SUS] cos (@, — w,)]o™(x) .

may be shown that S

This contribution to Q'(u™+x) is therefore an ap-
proximately spherically symmetric function of x.

(iii) Similar simplification of the term involving
QQ2nrk) [2(2nrk) is shown in Fig. 1] is not possible

nk3Q(2rrky)dz, is not bounded.

all space

However, certain features of this term may be noted.
It depends upon the product of the planar components
of 8" and S$". It is highly asymmetric with a cos 2«-type
dependence, the positive lobes of the function making
an angle o«=(w,, +w,)/2 with axis 1. The radial distri-
bution of the function depends upon the precise nature
of o(r) but has value zero at x=0 and falls at large
|x| as o(r) falls off with |r|. The type of spatial varia-
tion to be expected from this term is shown in Fig. 2.
The ¢™'(r) used in this case was the autocorrelation
function for a Gaussian distribution (r).

The overall expression for Q'(u™" +x) is therefore

as the integral S

Ql(umn +x)= [STST+ %STSU" oS (W, — w,)]a™(X)
+ Lt {STSink3Q(2nrk,)

ko= oo

x €08 [200— (W, + @,)]} * 6™ (r)

and its main features are

(a) A peak height S™S"+18™S?" cos (w,, — w,)o™(0).

(b) A peak elongation in the direction of the bisector
of the angle between S™ and S".

[c™(0) varies with the electron distributions of the
atoms m, n but is usually ~0-75 for 3d electrons.]

Q’(u) for three-dimensional data

In Appendix 2 it is shown that for three-dimensional
data

, 4nk3
Q'(u™+x)= Lt {—3— - [((PQ2rkor) — OR2nkyr))S™ . S
ko= oo
+{30Qnkqr) — D2nkyr)}S™SHS™ . X)

(8. f()]} « 0™ (r) .

THE THEORY OF THE SPIN-DENSITY PATTERSON

FUNCTION

The functions @ (2nkyr) and D(2nkyr) are shown in
Fig. 3. o™ (r) is again very nearly spherically symme-
tric, despite asphericities in &"(r) and S "(r). This is
illustrated in Fig. 4 by the {100} section of a(r) for
the self convolution of an Fe?*3d ¢, electron-density

~o1p

T T >
U 15 z=2mrk
ool

Fig. 1. The functions 4,(z) and 2(z) (dashed curve).

Fig. 2. Contribution to a 2D Patterson peak of the term
Lt QQ2nkor) {cos [200— (W + 0]} * {F™(r) + F™(—1)}
kg—o0
for a Gaussian distribution &™(r). Contours are drawn at
intervals of 0-05. The zero contour is omitted.
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distribution. Also shown is the same section of the
e, density function. It can be seen that the asphericity
is considerably reduced by the convolution. The con-
volution was performed by transforming the square
of the e, form factor, to which an analytic approxi-
mation was made by use of the j, and j, functions fitted
by Lisher & Forsyth (1971) to the calculations of Wat-
son & Freeman (1961).

_01 b
Fig. 3. The functions &(z) and O(z) (dashed curve).

—(010)

(100)

(@)
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The first term in the expression for Q'(v™+x) is
therefore nearly spherically symmetric, while the sec-
ond term is highly aspherical and produces a peak
elongation along the bisector of spin direction S™ and
S". It can be shown that at x=0 the expression reduces
to Q'(™)=2%S". S"¢™(0) [¢™(0)~0-71 for 3d elec-
trons].

Discussion and conclusions

The present more rigorous derivation of expressions
for the forms of peaks in a spin-density Patterson dis-
tribution function has shown the conclusions of the
original paper to be correct. The heights of the Patter-
son peaks are 3S™.S"¢™(0) [3D] or (S™.S"+1ST.
S1)e™(0) [2D], with ¢™(0) usually~0-7. The elonga-
tion of peaks is in the direction of the bisector of the
spin directions S™.S" (or S7.S%), as ¢™(r) is nor-
mally an almost spherically symmetric function of r.
Convolution of highly aspherical electron-density dis-
tributions has shown that the resultant 6™ (r) is almost
spherically symmetric and therefore the direction of
the peak elongation will not be affected by such
asphericities.

APPENDIX 1
O’ (u) for a zone of data

The Patterson function Q’(u) is given by

Q'(u)=Q(u) — R(u)
where

R(u):g'z 22@%7) « [0 * )]

and &,(r), £ r) are the components on the ith and
jth axis of the projected spin-density distribution.

—_—
(010)
(110)

(100)

)

Fig. 4. (a) {100} section of the self convolution of an Fe?* jon witha completely ¢, 3d electron-density distribution. Contours are
drawn at intervals of 0-156 e2 A ~3. The zero contour is omitted. (b) {100} section of the e, density function. Contours are drawn

at intervals of 0-156 e A~3. The zero contour is omitted.
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Now

—_— ko p2n
k= Lt S (" cos? (a+0) exp (2rirk cos 9)kdkdo

ko—co Y0 0

2
- Lt nk?

ko— oo 2
+ QQ2nkyr) cos 2a]

where

[4,2rkyr)(1 4 cos 20)

Si(z)
(z/2)°
while « is the angle between r and axis 1 and & is the
angle between r and k. Similarly

1 —Jo(2)

A(2)= W

Q(2)=

J— 2
fky= Lt K9 14 2nker) (1= cos 26)

koo 2

+ Q(2nkyr) cos 2a]

and
T T nk? .
kik,=lhf,= Lt > [A4,Q2rkyr) sin 2«
ko o0
—Q(2nkyr) cos 2q] .

Combining these terms gives

kZ
Ru™+x)= Lt 205
ko— o 2

TS {4, (2mkor)

% [cos (200 — (W + @,)) + cOS (W — W,)]

—QQ2nkyr) [cos 2o — (wy + @ N1}

# {Pm(r) « Pr(—1)}
where &#™(r) is the ‘unitary’ spin-density distribution
function defined by #™(r)=m(r)/S™, S™ is the com-
ponent in the plane of the total projected spin density
associated with atom m, w,, is the angle between S™
and axis 1 and x is the vector distance measured from

the vector position u™.
It can be similarly shown that

Qu™+x)= Lt 7nk}{A,(2nk,r)
ko—
x [STSh 4+ S™ST cos (W —w,)]}
* {Fm(x) x P(—1)}
and thus
Q'™ +x)= Lt 7k3{A,2rkyr)
ko— oo
X [STST +1STST cos (Wm— @)
—S1S% cos (20— (w,, + w,))]
+ QQ2nkyr)STS"[cos (2a— (W, + w,))]}
* {F(r) x PY(-1)} .

THE THEORY OF THE SPIN-DENSITY PATTERSON FUNCTION

APPENDIX 2

Three-dimensional data
In this case

R@) =1i3 Ii}/%?féj (L) % L)

The quantities involved in the summation are of the
type

(@
2r w o
fiky= S S \ ik exp irk cos 0) k* sin 6d6akdy
000
o 6 k
3
= Lt f‘gk—o {cos? a,JOQ2rk,r)—2®2nkyr)]
ko—>oo
+sin? o, ®@(2nk,r)}
where
®(z)= 3 (sin z;z cos z)
3[Fi(z)—sin z
0@z)= J,,,,,(,gé,, in 2]
and
. Z sin y
Fi(z)=\ — 7 dy.
@=\ =7
)
Tde,= Lt Yk 30Q2nkyr)— B(2mk
k= Lt 3 cos a; cos a;{30(2nkyr) — D(2nkyr)}

and summing over all nine terms gives
Ru)= Lt —4rk3{(ST cos a,+ ST cos a,+ ST cos as)
kg—>o0
X% (S{ cos a; + S cos &, + .57 cos o)
x [30(2nkyr) — ®2nk,r)]
— 8™, S"02nkyr)} * {F™(X) * F(—1)} .

It may similarly be shown that

Q)= Lt 4ak3®(Q2rkyr)S™.S" * {P™(r) + P(—1)}

kg—>o0
and therefore

Q'™ +x)= Lt 4rk3{[®Q2nke)—OQ2nkyr)IS™. S"

kQ—>cc
+ S"S"30(2nkor) — B(21kor)] (5™ . R)
X (8" . %)} * {F™(r) « P(—1)}.

References

LisHER, E. J. & FOrsYTH, J. B. (1971). Acta Cryst. A217,
545-549.

WATSON, R. E. & FrReeMaN, A. J. (1961). Acta Cryst. 14,
27-37.

WILKINSON, C. (1968). Phil. Mag. 17, 609-621.



