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A general treatment is given of the derivation of a spin-density Patterson function from unpolarized 
neutron-diffraction data, showing that a peak in the function due to atoms m and n with spins S m, S n has 
a height proportional to S m . S" and is elongated in a direction which bisects these spin directions. The 
elongation is not appreciably affected even when the spin-density distributions of the atoms are highly 
aspherical. 

Introduction 

The essential features of the spin-density Patterson 
function have been described in a previous paper (Wil- 
kinson, 1968). The purpose of the present paper is to 
provide a more precise treatment of certain parts of 
theory in which approximations were previously made. 
The same notation will again be used. 

The Patterson function Q'(u) calculated from un- 
polarized neutron-difl'raction intensities from a single 
crystal is given by 

Q ' (u) = Q (u) - R(u)  

where Q(u) is the scalar-product autocorrelation func- 
tion of the spin density: 

i Y 
Q(u)= ~ ~ 5:i(r) * 5 : j ( - r ) .  

1--3 I--3 

R(u) is the sum of the convolutions of the Fourier 
transform of the appropriate pairs of scattering-vector 
direction-cosine products with terms in the summation 
for Q(u) and is 

t j 
R(u)= ~ ~ (k,kj) • [~ , ( r )  • : X - r ) ] .  

1--3 1--3 

In the previous theory for the evaluation of R(u) it 
was assumed that the form factors for all magnetic 
atoms in the structure could be represented by the 

function exp (-p2k2). The present treatment shows 
that this is an unnecessary approximation, but that the 
main features of the result (i.e. Patterson peak height 
proportional to the scalar product of component spins, 
elongation of peak in direction bisecting spin direc- 
tions) remain unchanged. Expressions for R(u) and 
Q(u) are derived for two and three-dimensional data in 
Appendices 1 and 2. 

Q'(u) for a zone of data measured out to Ik[ = k0 

In Appendix 1 it is shown that for two-dimensional 
data the Patterson peak due to atoms m and n which 
are separated by a distance u"" is 

Q'(u"" + x ) =  Lt {~k2o(Al(2nrko) 
/¢0~ oo 

m , (09m-- 09,) × [S.S", " 1 ~"~,  T - ~ o  Jl ~ N COS 

-S"~S7 cos (2a-(09m+09,))] 

+ f2(2~zrko)S ~":S ~ cos ( 2 a -  (09,, + 09,)) 

• (.5~"(r) • 5~"( -r ) ) } .  

The component functions in this expression require 
some explanation. 

(i) The quantity ~ " ( r ) .  5 % ( - r )  is similar to that 
which appears in the expression for Patterson peaks 
calculated from X-ray intensities. In the two-dimen- 
sional case it represents the convolution of the pro- 
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jected spin-density distributions associated with atoms 
m and n and will in future be abbreviated by a'""(r). 
It is usually almost spherically symmetric and is rela- 
tively insensitive to aspherical parts in ~'/1(r) and 
~"(r). 

(ii) The function Al(2rcrk) is illustrated in Fig. 1. It 

may be shown that ~ rck z Al(2rcrko) d r r -  = 1 for lo / 
J all space '~, 

any k0. Thus when k0 is very large (data from all 09 
reciprocal space are included) and A~(2rcrko) is con- ~ 
sequently sharply peaked at the origin of real space, 
the convolution involving AI gives o8 

Lt {rck2A~(Zrcrko) [S"~S~.~-,...,,...H't ~,,~,, cos (co,/1- co,) 07 
k 0 ~  e o  

-S~S ,7  cos ( 2 ~ -  (co,, + co,))] * tr'"(r)} 06 
DI /1 - [ S i S . - - t v ' / 1 v " _  ~,.. ,,._. ,, cos ( co , , -  c o , ) ] a " " ( x ) .  

05 
This contribution to Q ' (u""+x)  is therefore an ap- 
proximately spherically symmetric function of x. 

(iii) Similar simplification of the term involving 0n 
f2(2zcrk) [Q(2rcrk) is shown in Fig. l] is not possible 0.a 

o 

as the integral \ rck2f2(2rcrko)drr is not bounded. 
d all space 02 

However, certain features of this term may be noted. 
It depends upon the product of the planar components 
of S m and S". It is highly asymmetric with a cos 2~-type 0.~ 
dependence, the positive lobes of the function making 
an angle ~=(co,/1+co/1)/2 with axis 1. The radial distri- 0 
bution of the function depends upon the precise nature 
of tr(r) but has value zero at x = 0  and falls at large -0~. 
Ix[ as o'(r) falls off with ]r]. The type of spatial varia- 
tion to be expected from this term is shown in Fig. 2. 
The crm"(r) used in this case was the autocorrelation 
function for a Gaussian distribution 5k(r). 

The overall expression for Q ' (u""+x)  is therefore 

I l l  /1 Q t ( urnn ._I_ X ) : [ S _L S.L _a_. 2 q m q "", COS ( (Dm - -  (D n ) ] (Tmn ( x ) 

+ Lt {S~S~zck2f2(2rcrko) 
k 0 ~ o  

x cos [2~-  (co,/1 + ~,,)]} • tr'/1(r) 

and its main features are 
(a) A peak height S")S]_ + ~Sa ",, S ,,/1 cos (co,, - co,)a'/1/1(O). 
(b) A peak elongation in the direction of the bisector 

of the angle between S'" and S/1. 
[o-""(0) varies with the electron distributions of the 

atoms m, n but is usually ,-.0.75 for 3d electrons.] 

Q'(u) for three-dimensional data 

In Appendix 2 it is shown that for three-dimensional 
data 

x )=  Lt /4zc~ -~- [(cD(Zrckor)-O(Znkor))S". S/1 Q,(ur,,/1+ 
k0~oo l o  

+ {30(2rckor)-q~(Zrckor)}S"'S"(S". r2) 

x (~,". ~)]]~ • ~r""(r). 
J 

The functions O (2nkor) and ~(2nkor) are shown in 
Fig. 3. a"/1(r) is again very nearly spherically symme- 
tric, despite asphericities in 5%"(r) and 5~"(r). This is 
illustrated in Fig. 4 by the {100} section of a(r) for 
the self convolution of an FeZ+3d e o electron-density 

\ 
I 

\ 

I 

\ 
\ 

\ 

15 z=2~rk 

-0 .2  

Fig. 1. The  func t ions  Al ( z )  and  .Q(z) (dashed  curve).  

I I %~, ~ i I I I "~ l | 

Fig. 2. C o n t r i b u t i o n  to a 2D Pa t t e r son  peak  of  the t e rm 
Lt  g2(Enkor) {cos [2ct - (co,,, + ~,)]} • {oO"(r) • if,,.( _ r)} 

k0-->eo 
for  a G a u s s i a n  d i s t r ibu t ion  5~'(r) .  C o n t o u r s  are d r a w n  at 
intervals  o f  0.05. The  zero c o n t o u r  is omi t t ed .  
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distribution. Also shown is the same section of  the 
e o density function. It can be seen that  the asphericity 
is considerably reduced by the convolution. The con- 
volution was performed by t ransforming the square 
of  the eg form factor, to which an analytic approxi- 
mat ion was made by use of the j0 andj4  functions fitted 
by Lisher & Forsyth (1971) to the calculations of Wat- 
son & Freeman (1961). 

10[ 
0'9 

0"8 

0'7 

0"6 

0'5 

The first te rm in the expression for Q'(umn+x)  is 
therefore nearly spherically symmetric, while the sec- 
ond term is highly aspherical and produces a peak 
elongation along the bisector of  spin direction S m and 
S". It can be shown that at x = 0 the expression reduces 
to Q'(u.mn)=2S m . Sno'mn(O) [o'mn(O)~0"71 for 3d elec- 
trons]. 

Discussion and conclusions 

The present more rigorous derivation of  expressions 
for the forms of peaks in a spin-density Patterson dis- 
tr ibution function has shown the conclusions of the 
original paper  to be correct. The heights of  the Patter- 

. n 1 m son peaks are 2sm. Sharon(O) [3D] or (Sm S +~S~ . 
S$)~m"(0) [2D], with am"(o) usually ,-~ 0"7. The elonga- 
tion of  peaks is in the direction of the bisector of  the 
spin directions S m . S" (or S~ .  S~), as ¢Tmn(r) is nor- 
mally an almost spherically symmetric function of r. 
Convolut ion of highly aspherical electron-density dis- 
tr ibutions has shown that  the resultant cTmn(r) is almost  
spherically symmetric and therefore the direction of  
the peak elongation will not be affected by such 
asphericities. 

0"4 

0'3 

0"2 

0"1 

-0"1 

10 15 z=2nrk  

Fig. 3. The functions ~(z) and O(z) (dashed curve). 

A P P E N D I X  1 

Q' (u~ for a zone of data 

The Patterson function Q'(u) is given by 

where 

Q'(u) = Q(u) - R(u) 

i j 
n(u)= (k%) • [se,(r), S%(r)] 

1 - - 2  1 - - 2  

and ~9°~(r), ~ j ( r )  are the components  on the ith and 
j t h  axis of  the projected spin-density distribution. 

(lOO) 

x,~ (110) 

---~(oi o) 

1A 

-~o)  

(11 o) 

(lOO) 
i 

(a) (b) 

Fig. 4. (a) { 100} section of the self convolution of an FC + ion with a completely e93d electron-density distribution. Contours are 
drawn at intervals of 0.156 e 2 A,-3. The zero contour is omitted. (b) { 100} section of the e 9 density function. Contours are drawn 
at intervals of 0.156 e/~-3. The zero contour is omitted. 
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N o w  

~ak~ = Lt cos 2 (a + 0) exp (2zrirk cos O)kdkdO 
ko--* oo ~0 

. ~ko z 
= Lt  - -  [Ad2rckor)(1 +cos  2~) 

k0_~ co 2 

+ ~2(2~rk0r) cos 2~] 

where 

A ( z )  ~ - So(Z) 
A d z ) -  I2(z) = 

(z/2) ' (z/2) z 

while ~ is the angle between r and axis 1 and 0 is the 
angle between r and k. Similarly 

zrk~ [Ad2zrkor) (1 - cos 2ce) k,k2 = Lt - - f -  
k0~oo  

+ g2(2rck0r) cos 2c¢] 

and 

~rk~ [Ad2zrkor) sin 2~ 
kO--* ~ 

-.O(2rckor) cos 2c~]. 

Combining these terms gives 

nk~ S~,S~{At(Znkor) R(u m " + x ) =  Lt - - ~  
k0~oo  

x [cos (2~- (co,. + co.)) + c o s  ((-D m - -  ( 'On) ]  

-f2(2nkor) [cos (2~- (ogm +CO.))]} 

, {~m(r)  , 5~"( -  r) } 

where dam(r) is the 'unitary' spin-density distribution 
function defined by 5Pro(r)= 5e~(r)/S~,, S~' is the com- 
ponent in the plane of the total projected spin density 
associated with atom m, Ogre is the angle between S~ 
and axis 1 and x is the vector distance measured from 
the vector position um". 

It can be similarly shown that 

Q(u ran+X)= Lt rck~{Ad2rckor) 
k0--* oo 

m t/ m I1 X [8.1_83. + S II S ii c o s  (o.) m - (_.On)]} 

* {~m(r)  * ~9~n(- r) } 

and thus 

Q'(u m" + x)=  Lt rck~{At(2rckor) 
kO-~ oo 

X [Sn~Sn_L Jr- 1 .~m~n ((Dm__(_Dn) g ~  " "  Ji C O S  

- S~S~ cos (2c~- (co,,, + o9,))1 

+ f2(2z~kor)S~S",,[cos ( 2 e -  (ogre +O9,))]} 

* {5~m(r) * S~n(-- r)}.  

A P P E N D I X  2 

Three-dimensional data 
In this case 

i ] 

R(a)=  ~ ~ f q ~ j ,  {,9~,(r), 5Pj(r)}. 
1 - 3  I - 3  

The quantities involved in the summation are of the 
type 

(a) 
2n n oo 

~1](i = I fI~i~i exp (2~rirk cos O)k  2 sin 0d0dkd9 
~ v.I V* 

0 0 0 
~0 0 k 

= Lt 4rck~{cos2oedO(2rckor)-2~(2rckor)] 
kO_~Oo .... - 3 - -  

+ sin 2 cq~(2rck0r)} 

where 

and 

(b) 

f q k j =  

q~(z 3 (sin z - z  cos z) I ) . . . .  . . . . .  
- 9  

|O(z)  315ei(z)- sin z] 
[ .............. z3 . . . .  

5ai(z) = f z s in.y dy .  
• 0 y 

4zck3o 
Lt 3 cos ~i cos o~j{30(2rckor)-q~(2r&or)} 

k0--+oo 

and summing over all nine terms gives 

R(u) = Lt _ 4 3 m ~zcko{(S1 cos ~1 + S~" cos ~2 + S~' cos ~3) 
k0-.-~oo 

x (S~ cos ~ + S~ cos c~2 + S~ cos ~3) 

x [30(2rckor)- q~(2z&or)] 

- S  m . S"O(2zrkor)} • {5~m(r) * 5P" ( - r )} .  

It may similarly be shown that 

Q(u)= Lt ~ k 3 ~ ( Z ~ k o r ) S  m . S" • {Skin(r) * 5 A ( - r ) }  
k0---~oo 

and therefore 

Q' (um"+x)= Lt 4z~k3o{[eb(2r~kor)-O(2rckor)]S". S" 
kO--+oo 

+ sms"[30(2rckor)-  q~(2zck0r)] (gin. ~) 

x ( g . .  ~ )}  • {dam( r )  * ~ " ( - - r ) }  . 
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